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Abstract

Quantifying tree biomass is an important research andmanagement goal acrossmany disciplines.
For species that exhibit predictable relationships between structuralmetrics (e.g. diameter, height,
crown breadth) and total weight, allometric calculations produce accurate estimates of above-
ground biomass. However, such methods may be insufficient where inter-individual variation
is large relative to individual biomass and is itself of interest (for example, variation due to her-
bivory). In an East African savanna bushland, we analysed photographs of small (<5m) trees
from perpendicular angles and fixed distances to estimate above-ground biomass. Pixel area
of trees in photos and diameter were more strongly related to measured, above-ground biomass
of destructively sampled trees than biomass estimated using a published allometric relation
based on diameter alone (R2= 0.86 versus R2= 0.68). When tested on trees in herbivore-
exclusion plots versus unfenced (open) plots, our predictive equation based on photos con-
firmed higher above-ground biomass in the exclusion plots than in unfenced (open) plots
(P< 0.001), in contrast to no significant difference based on the allometric equation (P= 0.43).
As such, our new technique based on photographs offers an accurate and cost-effective comple-
ment to existing methods for tree biomass estimation at small scales with potential application
across a wide variety of settings.

Introduction

Allometric relationships enable the estimation of above-ground biomass of trees from structural
measurements (e.g. diameter, height, crown breadth; Chave et al. 2005, Henry et al. 2011, Pastor
et al. 1984, Young et al. 1964). This approach is most useful for individuals of large size which
exhibit little variation in structure relative to overall biomass (e.g. rainforest trees). However,
in populations with greater structural heterogeneity relative to total biomass, allometric rela-
tionships may be unreliable (Antonio et al. 2007, Dutcă et al. 2017). Such variation among
individuals can arise from a number of factors, including structural modification of trees
due to herbivory (Whitham & Mopper 1985), parasitism (Stanton et al. 1999), competition
(Poorter et al. 2012) or abiotic conditions (Copenhaver & Tinker 2014). Therefore, in systems
where structural heterogeneity is both large relative to individual biomass and itself of interest to
researchers, methods that accurately quantify such variation are needed.

Recent advances in remote sensing technologies have made it possible to rapidly quantify
such individual variation. LiDAR (Light Detection And Ranging) can generate highly accurate
(<1 cm spacing) point clouds from which 3D models of trees can be constructed (Raumonen
et al. 2015, Yao et al. 2012) and their biomass estimated (Gonzalez de Tanago et al. 2018,
Popescu 2007). However, LiDAR is prohibitively expensive for many, with a standard sensor
costing $115 000 from the manufacturer (Rieglusa.com). Commissioning airborne LiDAR
surveys may be cheaper but still costs tens of thousands of dollars. These techniques may be
cost-effective if large tracts of land need to be surveyed, however for smaller scale studies they
are unsuitable. In an attempt to balance affordability, simplicity and accuracy, we developed a
technique to estimate above-ground biomass via photography and freely available image
analysis software.

We sought to reliably assess above-ground biomass of Acacia (Vachellia) drepanolobium, a
small (<5 m tall) savanna tree that forms monodominant stands across large tracts (100–1000s
of km2) in central Kenya (Young et al. 1997b). As both a nitrogen fixer (Fox-Dobbs et al. 2010)
and a key component of several large mammals’ diets (Birkett 2002, Kartzinel et al. 2015),
A. drepanolobium is an important driver of ecosystem function. It is also a myrmecophyte
(ant plant) which may host any of four intensely competing ant species offering varying degrees
of protection against herbivores in exchange for food (extra-floral nectar) and shelter (modified
stipular spines) (Palmer et al. 2008, 2010). Because the various species of ant occupants differentially
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modify the architecture of A. drepanolobium, trees of the same
trunk diameter can have drastically different canopy shapes
(Stanton et al. 1999). In addition, elephants can dramatically alter
tree canopy by ripping off large segments during feeding, remov-
ing anywhere from 10–100% of branches (Figure 1). As a result,
variation amongst A. drepanolobium can be as large as the total
biomass of individual trees. For example, two trees of equal
diameter may differ in biomass by orders of magnitude when
one tree has had its entire canopy removed via elephant herbi-
vory. We developed our photographic technique to quantify this
variation due to herbivory and ant occupant. Accordingly, we
trained our method on trees with multiple species of ant occupant
and validated the method in replicated unfenced and herbivore-
exclusion plots.

Methods

Study site

Weworked at Mpala Research Centre (0°17 054.0"N, 36°52 016.4"E)
andOl Pejeta Conservancy (0°02 001.7"N, 36°52 059.9"E) in Laikipia
County, Kenya. Here, as in many other parts of East Africa
underlain by black cotton soils, A. drepanolobium forms the vast
majority (~98%) of tree cover (Goheen & Palmer 2010, Pringle
et al. 2016, Young et al. 1997a). Throughout most of its range,
A. drepanolobium exhibits variable canopy volume and a maxi-
mum height of 3–5 m (Okello et al. 2001); trees >3 m are rare at
our study sites.

Tree selection

We selected a sample of 30 A. drepanolobium trees at Mpala
Research Centre, ranging from 0.5–2.5 m tall and with diameters
from 3–10 cm. We measured height and diameter; we measured
diameter at 30 cm above the ground and marked the position with
red paint. To account for variation in tree architecture, we selected
trees that were occupied by the most common species of ant sym-
bionts (Stanton et al. 1999). We selected 10 trees occupied by the
less common Crematogaster nigriceps, which tend to exhibit
smaller, more condensed architectures, and 20 trees occupied by
the more common C. mimosae, which reach a greater height but
have sparser canopies.

Photo acquisition

Using a 4-megapixel Nikon Coolpix 4500 mounted on a 1 m
tripod, we took two photos of each tree at perpendicular angles
to account for anisotropy. For each photo, the camera was placed
4 m from the tree and aligned either due north or east as measured
by a high accuracy GPS compass (Garmin GPSMAP 64st). In cases
where obstacles prevented camera placement due north or due east,
both photo points were offset equally tomaintain perpendicular ori-
entations. We then used a bubble level to adjust the tripod until the
camera was level relative to the ground.We also included a ruler at a
fixed position for scale. The ruler was placed equidistant between the
two photo points, 3.5 m from each point and 0.5 m from the tree.
Once the camera and ruler were situated, a large, red-fabric sheet
was erected behind the tree to maximize contrast (Figure 2). The
photograph was taken at minimum zoom (38 mm focal length
in 35 mm camera equivalent) and at maximum resolution
(2272 × 1704 pixels) in manual mode, so that aperture and shut-
ter speed could be manipulated for maximum contrast between
tree and sheet. We repeated this process for each tree for a total
of 60 photos (2 photos per tree for 30 trees).

Destructive sampling

After the trees had been photographed, they were cut down and all
components above the diameter measurement were collected in
large bags for drying (Okello et al. 2001). To ensure that photo pix-
els and their associated areas corresponded to actual canopy size,
for each tree we measured the sum of the lengths of all tree
branches >2 cm in diameter (hereafter ‘running branch length’).
The tree components in bags were left out in the sun during the
dry season and weighed every week until measurements stabilized;
they were measured for another 2 weeks after this point to ensure
constant dry weight had been reached. After 2months, all trees had
achieved a constant weight and final dry weight measurements
were taken.

Photo analysis

We attempted to isolate trees from background using auto-
mated and manual methods for photo analysis in three different
software packages: ImageJ, ArcGIS and GIMP. In ImageJ, we

Figure 1. Two photographs of the same tree in 2017 (left)
and 2019 (right) showing the extent of elephant damage on
canopy.
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used several auto-thresholding algorithms, which binarize an
image into background and object pixels based on different
mathematical approaches. In ArcGIS, we used both supervised
and unsupervised maximum likelihood classifications.
Comparing the resultant classifications visually, we found that ana-
lysing photos manually in GIMP (GNU Image Manipulation
Program), a freely available image editing software, was the most
accurate means of isolating trees from background (Figure 3).

We used the following procedure in GIMP. First, photos were
cropped to include only the portion of the tree above the red-
painted diameter mark. Then, we used the ‘select by color’ tool
to select and delete all pixels with colour values similar to a sample

of pixels from the (red) background sheet. This process was
iterated until only the tree pixels remained in the photo (hereafter
‘pixels’). The resolution of the original photo could be determined
using the included ruler (cm2/pixel). The area of the tree was then
calculated from this known scale and the total number of pixels
remaining in the photo (hereafter ‘area’).

Data analysis

Using individual tree dry weight as our response variable, we created
two competing multiple linear regression models. The predictors of
the twomodels were a series of covariates plus either photo pixels or

Figure 2. Photograph setup in the field, with camera
situated 4 m from the target tree and oriented to 0°.

Figure 3. An individual A. drepanolobium photo-
cropped (a), auto-thresholded using the three
best algorithms in ImageJ (IsoData, Minimum
and Otsu, b–d), classified using a supervised
maximum likelihood classification in ArcGIS
(e), and manually classified in GIMP (f).
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area (since area was derived from photo pixels, they could not both
be included in the same model; Equations 1 and 2).

Biomass kgð Þ~Pixelsþ Diameter cmð Þ þHeight mð Þ
þ Running Branch Length cmð Þ þ Ant Species Eqn 1

Biomass kgð Þ~Area cm2ð Þ þ Diameter cmð Þ þ Height mð Þ
þ Running Branch Length cmð Þ þ Ant Species

Eqn 2

The pixel values in perpendicular photos of the same tree were
averaged to create the model variable; the same was done for area.
The final candidate model was determined via backwards stepwise
model selection by AIC using the stepAIC function from theMASS
package in R (Venables & Ripley 2002). We evaluated the accuracy
of the model by k-fold cross validation, splitting the 30 test trees
into five groups and evaluating a model created from 80% of the
data against the remaining 20%, repeated 1000 times (Kuhn
2019). The predictions of the final regression model were com-
pared with an existing allometric equation for A. drepanolobium
(Okello et al. 2001; Equation 3).

Biomass kgð Þ ¼ eln diameterð Þ�2:2949þ4:7997=1000 Eqn 3

We performed all statistical analyses using R statistical software
(R Core Team 2018); regressions were carried out using the
lm() function and relative importance of variables was assessed
with the ‘relaimpo’ package (Grömping 2006).

Model validation

Finally, we used the regression to predict biomass for selected trees
within twelve 0.5-ha herbivore-exclusion plots of a separate experi-
ment started in 2017 at Ol Pejeta Conservancy. Half of the plots
were fenced to keep out elephants and other large (>30 kg) ungu-
lates, and half were left unfenced. Paired fenced and unfenced plots
are separated by less than 50 m to control for effects of precipita-
tion and soil, and all plots were located in the same 37.5 km2 area.
A stratified random sample of tagged trees within these plots have
been measured annually for a separate demographic study. We
used a subset of these trees to validate our model: those that could
be physically photographed (i.e. were not obstructed by other
closely growing trees) and were in the same 0.5–2.5 m height range
as the trees used in model training. We photographed 10 trees in
each plot (for a total of 120 trees). On a windless day, it took ~1.5
hours to photograph 10 trees; therefore, to photograph all trees
within a 0.5 ha plot (60–70) under ideal conditions would take
~12 hours. The plots had been fenced for 2 years by the time of
photographing and showed significant differences in tree measure-
ments (Table 1); we therefore expected differences in tree biomass
between the unfenced and fenced areas. Finally, we applied Okello
et al.’s regression to the same trees for comparison.

Results

Running branch length was positively correlated with tree area
calculated from photographs (r= 0.90) and significantly related
to model predicted biomass (R2= 0.83, P< 0.001), demonstrating
that photo-derived area accurately represents tree canopy area.

The final (best) regressionmodel for tree biomass included only
diameter and tree area in photos, with R2= 0.86 after cross validation

(Table 2). Ant occupant was not a significant variable in the model,
nor was there a significant difference in biomass based on ant species
(2-sided t-test, P= 0.43). Area was a slightly better predictor of
biomass (R2 = 0.86 vs R2 = 0.85) and was used instead of pixels,
since they were highly collinear. Height was highly correlated
with diameter (r = 0.77) and only accounted for a small amount
of variation not accounted for by diameter (R2 = 0.0056).

The allometric equation of Okello et al. explained less variation
(R2= 0.68, RMSE = 2.97) than our regression (R2= 0.86, RMSE=
1.36, Figure 4). Squared residuals of the allometric predictions were
significantly greater than our regression predictions (1-sided t-test,
P= 0.02).

Finally, average individual tree biomass within herbivore-
exclusion plots, as modelled by our photographic regression,
was significantly greater (1-sided t-test, P< 0.001) in fenced plots
(mean= 7.75 kg ± 0.50 SEM) than in open plots (mean= 4.52 kg ±
0.51 SEM). However, biomassmodelled by theOkello et al. equation
for the same subset of trees did not show a significant difference
(1-sided t-test, P= 0.43) between fenced plots (mean= 9.44 ±
0.70 SEM) and open plots (9.20 ± 1.33 SEM, Figure 5). Nor did
the allometric equation show a significant difference in biomass
when applied to all trees within plots (1-sided t-test, P= 0.48).

Discussion

Our photographic technique accurately predicted above-ground
biomass of A. drepanolobium and was a substantial improvement
over an existing allometric equation. Using this method, we were
able to quantify the significant difference in above-ground biomass
between unfenced and herbivore-exclosure plots, attributable to
herbivore browsing. This contrast was apparent from a visual sur-
vey of the plots and was reflected in significant differences in tree
height and diameter. However, the biomass estimates from the
existing allometric equation of Okello et al. (2001) did not accu-
rately capture these differences, demonstrating the need for a
complementarymethod to quantify changes in biomass due to her-
bivory. In addition, we did not find an effect of ant occupant, sug-
gesting that differences in architecture induced by ants do not

Table 1. Means and standard errors about means for tree measurements in the
experimental plots used for model validation, with 380 trees in fenced plots and
385 trees in open plots

Fenced Open

2-sided t-testMean SEM Mean SEM

Height (m) 1.83 0.06 1.30 0.06 P <0.001

Diameter (cm) 5.00 0.17 4.38 0.20 P= 0.02

Basal area (cm2) 28.57 1.77 27.42 2.25 P= 0.69

Pixel area (cm2) 8714.97 630.40 3342.64 472.08 P <0.001

Table 2. Parameters for the final regression, with R2= 0.86

Parameter
estimate

Standard
error Probability

Variation
explained

Intercept −3.240 1.072 <0.01

Area 0.0005259 0.00009901 <0.01 46%

Diameter 0.9941 0.2343 <0.01 40%
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affect total biomass. Our photographic method provides an impor-
tant extension to existingmethods for quantifying changes in above-
ground biomass.

In Laikipia and other regions of Kenya, A. drepanolobium is a
key component of several largemammals’ diets, including elephants
(Loxodonta africana), reticulated giraffes (Giraffa camelopardalis
reticulata) and black rhino (Diceros bicornis) (Birkett 2002,
Kartzinel et al. 2015). Additionally, A. drepanolobium fixes nitrogen
and partially drives nutrient dynamics and forage quality (Fox-
Dobbs et al. 2010). Tracking changes in this acacia’s biomass is
therefore important for understanding both food availability for
browsers and forage quality for all herbivores. This is particularly
pertinent because A. drepanolobium in Laikipia County may expe-
rience wide-scale changes in abundance and cover due to increasing
disturbance from invasive species (Riginos et al. 2015), charcoal har-
vesting (Okello et al. 2001) and land use change (Muriithi 2016).

Across most savannas, tree biomass and cover are important
drivers of ecosystem structure and function (Holdo et al. 2009).
Trees provide food for browsers, fix nutrients in soil, serve as hab-
itat for arthropods and nesting sites for birds, and modify mammal
movement and habitat use. Therefore, accurately measuring tree
biomass is not only a desirable goal in itself but will also enhance
our understanding of savanna ecology and aid in the management

of endangered species. Yet characterizing abundance, biomass and
size structure of trees has been a long-standing challenge in sav-
anna ecosystems (Archer 1996, House et al. 2003), particularly
for remote sensing approaches (Munyati et al. 2011). While there
have been photographic techniques developed to measure vegeta-
tive cover or shrub biomass (Louhaichi et al. 2010, 2017), these
studies were conducted in arid regions in which low vegetation
(forbs and shrubs) stood out starkly against a background of bare
earth when viewed from above. In contrast, savannas are charac-
terized by a matrix of grass that can be spectrally confused with
the trees of interest (Cho et al. 2012). Likewise, a similar method
(Ter-Mikaelian & Parker 2000) measured biomass on small, rela-
tively isotropic seedlings that were not structurally altered by her-
bivory. But larger trees (1–3 m) present more 3-dimensional
complexity and may suffer from significant asymmetry due to her-
bivory; consequently, they need to be photographed from multiple
angles at ground level.

Our method is substantially less expensive than LiDAR, costing
only a few hundred dollars for a camera, tripod and backdrop. It is
ideal for small-scale projects in which it is inexpensive to employ
3–5 personnel to survey trees, althoughwindy conditions canmake
holding the contrast backdrop physically taxing. However, our
method is more laborious than LiDAR, and could not realistically

Figure 4. Plots showing measured tree biomass
on the x-axis andmodel predicted biomass on the
y-axis. The solid line represents a perfect 1-1
model and the dashed line represent simple lin-
ear regressions (n= 30 trees) between measured
weights and weights predicted by the (a) Okello
et al. allometric equation and (b) the photo-
graphic regression of the current study. Linear
regression equations and R2 values are included.
The photographic regression (R2 = 0.86) per-
formed better than the allometric equation
(R2= 0.68). Note that the linear regression of
the allometric equation (A) falls wholly below
the 1-1 line.

Figure 5. Boxplots showing the distribution of
modeled biomasses for individual trees, pooled
by fenced plots (n= 58 trees) and open plots
(n= 59 trees). Predictions of the Okello allomet-
ric equation (a) do not show a significant differ-
ence between fenced and open plots (1 sided
t-test, P= 0.43). Predictions of the photographic
regression (b) do show significantly greater bio-
mass in fenced plots (1-sided t-test, P < 0.001).
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be used tomeasure trees at scales of tens or hundreds of hectares. In
cases where larger scales are of interest, our technique will provide
indispensable ground truth measurements by which to calibrate
other forms of remote sensing, including LiDAR or aerial biomass
estimates (Shepaschenko et al. 2019). In sum, our method provides
an accurate, cost-effective and relatively efficient complement to
existing methods for detecting changes in above-ground biomass
of trees across space or through time.

A major obstacle is the extensive photo processing time required
to classify photos of trees manually. If an accurate algorithmic
classification scheme could be implemented, it would reduce the
time investment considerably. Although our classification of photos
was necessarily subjective, it was still considerably more accurate
than any of the algorithmic approaches we attempted. Finally, those
intending to use this technique should opt for the highest resolution
(megapixel) camera available, as this will increase the accuracy of
results.

Beyond savannas, accurately and efficiently estimating biomass
of small trees should be useful for forest managers quantifying
understorey biomass or comparing total biomass of a single species
at different life stages (Hubau et al. 2019). In particular, it will be
useful for measuring change in biomass of individual trees over
time, allowing for more precise calculation of growth rates under
different environmental conditions. A similar photographic tech-
nique was used to quantify tree architecture andmeasure similarity
of traits between individuals in a study of herbivore community
assembly (Barbour et al. 2015). Any study in which researchers
wish to quantify browsing more accurately than commonly used
qualitativemetrics will also benefit from this method.We hope that
this technique will find broad use with anyone seeking to measure
above-ground biomass of relatively small (<5 m) trees.
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