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1  |  INTRODUC TION

In mammals, bacteria of the gut microbiome breakdown com-
plex foods (Hacquard et al., 2015), detoxify plant secondary com-
pounds (Kohl et al., 2014), protect hosts from pathogens (Pickard 
et al., 2017), and help maintain homeostasis (Cani et al., 2019). Two 
types of studies on ecoevolutionary trends involving mammals and 

their gut microbiomes have become common: (i) those focusing on 
broad phylogenetic patterns (Ley et al., 2008; Muegge et al., 2011; 
Song et al., 2020; Youngblut et al., 2019) and (ii) those focusing 
on fine- scale variation within and among closely related popula-
tions or species (Grond et al., 2020; Knowles et al., 2019; Moeller 
et al., 2013). Microbiome variation has been attributed to phy-
logenetic differences in host characteristics— including behavior 
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Abstract
Differences in the bacterial communities inhabiting mammalian gut microbiomes tend 
to reflect the phylogenetic relatedness of their hosts, a pattern dubbed phylosym-
biosis. Although most research on this pattern has compared the gut microbiomes of 
host species across biomes, understanding the evolutionary and ecological processes 
that generate phylosymbiosis requires comparisons across phylogenetic scales and 
under similar ecological conditions. We analysed the gut microbiomes of 14 sympatric 
small mammal species in a semi- arid African savanna, hypothesizing that there would 
be a strong phylosymbiotic pattern associated with differences in their body sizes 
and diets. Consistent with phylosymbiosis, microbiome dissimilarity increased with 
phylogenetic distance among hosts, ranging from congeneric sets of mice and hares 
that did not differ significantly in microbiome composition to species from different 
taxonomic orders that had almost no gut bacteria in common. While phylosymbiosis 
was detected among just the 11 species of rodents, it was substantially weaker at this 
scale than in comparisons involving all 14 species together. In contrast, microbiome 
diversity and composition were generally more strongly correlated with body size, di-
etary breadth, and dietary overlap in comparisons restricted to rodents than in those 
including all lineages. The starkest divides in microbiome composition thus reflected 
the broad evolutionary divergence of hosts, regardless of body size or diet, while 
subtler microbiome differences reflected variation in ecologically important traits of 
closely related hosts. Strong phylosymbiotic patterns arose deep in the phylogeny, 
and ecological filters that promote functional differentiation of cooccurring host spe-
cies may disrupt or obscure this pattern near the tips.
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(Moeller et al., 2016), biogeography (Lutz et al., 2019), diet (Muegge 
et al., 2011), and morphophysiology (Kohl et al., 2018)— although sub-
stantial individual level variation occurs as well (David et al., 2014). 
As a consequence of these many sources of variation, gut microbi-
omes are thought to often vary in ways that produce a pattern in 
which the similarity of host- associated microbial communities paral-
lels the phylogeny of host species— a pattern called “phylosymbiosis” 
(Brooks et al., 2016; Lim & Bordenstein, 2020).

Evidence for phylosymbiosis in mammalian gut microbiomes 
is so prevalent that the pattern often serves as a null expectation, 
although reports that phylosymbiosis is weak or absent have re-
cently emerged as noteworthy exceptions to this rule (Mallott & 
Amato, 2021; Song et al., 2020). These reports highlight a need to 
elucidate mechanisms that reinforce or diminish phylosymbiotic 
patterns involving species under investigation. Mechanisms that 
may reinforce phylosymbiotic patterns in mammals include live 
birth, parental care, and specific gut anatomies that together cre-
ate the potential for benefits involving the vertical transmission of 
bacteria from parents to offspring (Moeller et al., 2018). However, 
a principal challenge to the interpretation of phylosymbiotic pat-
terns involves substantial variation among lineages in their degree 
of geographic overlap, functional trait diversity, and diet composi-
tion (Ley et al., 2008; Muegge et al., 2011). The degree to which 
these factors contribute to (or diminish) the emergence of phylo-
symbiotic patterns probably differs depending on the phylogenetic 
scale of host species under investigation, the geographic extent of 
their distributions, and the functional diversity of traits they express 
(Westoby, 2006). Because microbiome composition hinges partly on 
phylogeny and partly on host characteristics that may themselves be 
structured phylogenetically, we need to consider both (i) the extent 
of microbiome variation that can be explained by host characteris-
tics after accounting for host phylogeny (Groussin et al., 2017) and 
(ii) the sensitivity of these results to the phylogenetic scale of host 
species under consideration (Graham et al., 2018).

Whereas prior comparative studies across diverse environments 
have helped identify host traits that contribute to gut microbiome 
differences across mammalian lineages, comparatively few have ad-
dressed similar questions about hosts that co- occur within ecologi-
cal communities (Kartzinel et al., 2019; Knowles et al., 2019; Moeller 
et al., 2013; Perofsky et al., 2019). At finer geographic and phyloge-
netic scales, ecological niche differences among host species have 
been shown to explain more microbiome variation than do phyloge-
netic relationships for bats (31 species, 19 genera) and chipmunks (6 
species, 1 genus) studied across extents of ~970 (Lutz et al., 2019) 
and ~1,560 km (Grond et al., 2020), respectively. These patterns con-
trast with global findings that have highlighted an overriding influ-
ence of host phylogeny on gut microbiomes across the mammalian 
tree of life (Nishida & Ochman, 2018; Sherrill- Mix et al., 2018). Such 
observations suggest that the phylogenetic distances among hosts, 
differences in host functional morphology, or both may contribute 
to phylosymbiotic patterns, but that the ecological constraints fac-
ing closely related hosts in similar ecological communities may erode 
them.

The paucity of community- level microbiome studies is a miss-
ing link for understanding of processes that may generate or disrupt 
phylosymbiosis. We compared gut microbiomes within a diverse as-
semblage of co- occurring hosts from a semi- arid Kenyan savanna. 
We considered the extent to which variation in gut microbiomes 
could be explained by phylogeny and/or functional traits including 
body size and diet. This small- mammal community includes species 
from three taxonomic orders, representing up to 105 million years 
of evolutionary history, and body sizes that span three orders of 
magnitude (4– 2, 320 g). We tested the hypotheses that: (i) all pairs 
of species differ significantly in microbiome composition; (ii) inter-
specific differences in microbiome composition increase with phy-
logenetic distance; and (iii) interspecific differences in microbiome 
composition increase with functional trait differences, including 
body size and diet, after accounting for phylogenetic relatedness. 
We expected that both phylogeny and functional traits would con-
tribute to variation in gut microbiome composition, but that their rel-
ative importance would differ depending on the phylogenetic scale 
of host lineages included in the analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Study system and sample collection

Our research was conducted at the Mpala Research Centre in 
Laikipia County, Kenya (0°17′ N, 37°52′E, 1,600- m elevation). A di-
verse community of small mammals (≲2 kg) occurs at this site, where 
since 2008, the Ungulate Herbivory Under Rainfall Uncertainty 
(UHURU) project has sampled at least 17 species (Figure S1; Alston 
et al., 2022; Goheen et al., 2018, 2013; Kartzinel et al., 2014). Our 
analysis focuses on three sites distributed across a 20- km transect. 
Each site contains a series of 1- ha experimental plots, including three 
pairs of fenced “exclusion plots” that have excluded large mamma-
lian herbivores (>5 kg) and adjacent unfenced “open plots” that are 
accessible to all species. Compared to open plots, understory veg-
etation cover is roughly 20% greater and small- mammal diversity is 
roughly three- fold greater in exclusion plots (Goheen et al., 2013; 
Kartzinel et al., 2014). Live trapping of small mammals occurs once 
every 2 months for four consecutive nights using Sherman traps 
baited with peanut butter and oats (N = 49 traps per plot per night 
per bout). Animals are weighed and identified to species in most 
cases, although we cannot distinguish congeneric species of Mus, 
Steatomys, and Crocidura in the field.

Of the three small- mammal orders that occur in these plots, 
Rodentia (rodents) is the most abundant and species- rich. The ro-
dents in this study range in size from 7 to 97 g (Table 1; Kartzinel 
et al., 2014) and prior analyses based on both stable isotopes 
and microhistology support species- level dietary categorizations 
that range from granivorous to omnivorous (Bergstrom, 2013; 
Keesing, 2000). The entire intestine tends to be larger in omnivo-
rous than granivorous rodents (Korn, 1992), but omnivores tend to 
have shorter colons and ceca (Sakaguchi, 2003). Representatives of 
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other taxonomic orders include two morphologically cryptic species 
of hares (Lepus spp.; Lagomorpha) and the rufous elephant shrew 
(Elephantulus rufescens; Macroscelidea). The hares are the two larg-
est species in the study (~2.3 kg) and are exclusively herbivorous (and 
coprophagous), producing soft pellets that they reingest to enhance 
nutrient extraction. These hare species differ in diet composition, 
but distinguishing them requires evaluation of museum specimens 
and/or genetics (Kartzinel et al., 2019). The elephant shrew (47 g) is 
exclusively insectivorous (Bergstrom, 2013), with a colon and cae-
cum that is distinctly shorter compared to herbivores of similar size 
(Woodall & Mackie, 1987).

To analyse gut microbiomes, we collected 128 fecal samples over 
a 3- year period (2015– 2017) from 14 host species that exhibited a 
broad variety of diets (Table 1, Table S1). This enabled us to build 
a community- level data set that included rare and morphologically 
cryptic host species that were either captured infrequently or were 
sampled opportunistically (Table S1). The timing and location of 
sampling for each species varied due to natural variation in the dis-
tribution and abundance of small mammal populations within and 
among plots (Table S1), but this sampling strategy enabled us to ob-
tain remarkable coverage of samples from the vast majority of small 
mammal species present. A small subset of taxa known to occur at 
the study sites were not sampled, including Arvicanthis nairobae, 
which is a locally rare congener of A. niloticus. Whenever possible, 
we collected fecal samples directly from the anus of animals during 
capture. If an animal did not defecate at the time of collection and a 
fresh fecal pellet was available in the trap, we collected that pellet. 
To reduce cross- contamination of fecal samples between animals 
caught on different nights, we removed fecal pellets and food from 
traps each day. Because hares are too large to capture in Sherman 
traps, we obtained fresh fecal samples opportunistically from the 
ground at the southern and central sites. Each fecal sample was 
stored in an unused plastic bag and placed on ice for transport to 
the laboratory.

To quantify diet variation within and among species, we mea-
sured carbon (δ13C) and nitrogen (δ15N) isotope values of hair from a 
subset of seven species in the same plots over an earlier 4- year study 
period (2009– 2013) involving otherwise similar conditions (e.g., 
precipitation, vegetation density; Alston et al., 2022). As in other 
tropical savannas, isotopic differentiation of C4 (mostly grasses) and 
C3 plants enables reliable determination of trophic relationships 
(Bergstrom, 2013; Kartzinel et al., 2015). We collected 553 hair sam-
ples from six rodent species and the elephant shrew (9– 211 individ-
uals per species). Hair from the base of the tail was cleaned with a 
2:1 chloroform: methanol solution, air- dried, and loaded (~0.5 mg) 
into tin capsules for analysis. We measured δ13C and δ15N with a 
Costech 4010 elemental analyser coupled to a (i) Thermo Finnigan 
Delta plus XP isotope ratio mass spectrometer at the University of 
Wyoming Stable Isotope Facility (Laramie, WY), or (ii) Thermo Fisher 
Delta V isotope ratio mass spectrometer at the University of New 
Mexico Centre for Stable Isotopes (Albuquerque, NM). Isotope data 
are reported as δ13C or δ15N = 1000 × ([Rsample– Rstandard/Rstandard]– 1), 
where Rsample and Rstandard are the 13C/12C or 15 N/14 N ratio of 

samples and standards, respectively. Laboratory reference materials 
are calibrated to the internationally accepted standards Vienna Pee 
Dee Belemnite limestone (V- PDB) and atmospheric nitrogen (AIR) 
respectively; units are parts per thousand (‰). Analytical precision 
was calculated as the mean within- run standard deviation of refer-
ence materials, which was ±0.2‰ for both δ13C and δ15N values. 
We characterized diets based on δ13C as a proxy for the relative use 
of C3 versus C4 plants, δ15N as a proxy for trophic level, and the 
standard ellipse area (SEA) of δ13C and δ15N as a proxy for dietary 
variation and overlap among species. We investigated (i) potentially 
confounding spatiotemporal variation in diets that could obscure 
correlations with gut microbiomes and (ii) the relationship between 
host diet composition and microbiome composition after accounting 
for phylogeny. To assess variation in diet composition that can be at-
tributed to species identity versus ecological changes through space 
and time, we compared mean δ13C and δ15N values according to host 
species identity, site, and year using ANOVA. Then, to compare di-
etary overlap between species, we calculated the proportion of SEA 
overlap for all pairs of species using the R package SIBER (Jackson 
et al., 2011) in each of two ways: (i) the overlapping proportion of the 
sum of SEA for both species; (ii) the partial overlap of SEA for each 
species within the SEA of each of the other species.

2.2  |  Microbiome sequencing

To preserve fecal DNA in the field, we transferred fecal samples to 
lysis tubes containing Zymo Xpedition buffer; we then homogenized 
the sample by vortexing it in lysis buffer for 30 s and froze it. We 
used Zymo soil/fecal mini kits to extract DNA from fecal samples 
and extraction blanks in a laboratory that included separate pre-  and 
post- PCR rooms and equipment and proceeded to sequence micro-
biomes after visually assessing a lack of amplification in extraction 
blanks. To analyse microbiomes, we generated amplicons of the V4 
hypervariable region of bacterial 16S rRNA using the primers 515f 
and 806r (Walters et al., 2016). Amplicons were normalized, pooled, 
quality checked using Qubit and Bioanalyser, and then sequenced in 
a 2 × 250 bp paired- end Illumina MiSeq run using version 2500 cycle 
reagents. In addition to amplicons from fecal DNA, we sequenced 
amplicons of a Zymo microbial community standard (henceforth, 
mock community) to evaluate accuracy and screen the resulting data 
for potential contaminants.

2.3  |  Host phylogeny construction

We used mitochondrial DNA barcoding to confirm small mammal 
identity and build a community phylogeny. We obtained fecal sam-
ples from eight taxa that were identifiable to species in the field and 
selected a subset of 2– 3 samples per species for host DNA barcod-
ing. We also obtained fecal samples from morphologically cryptic 
taxa within the genera Steatomys (N = 4), Lepus (N = 17), and Mus 
(N = 13); we only analysed microbiome data from these samples after 
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obtaining a diagnostic DNA barcode from the same fecal sample. To 
obtain these barcodes, we amplified and sequenced two mitochon-
drial markers: cytochrome b and the D- loop of the control region. 
We used a combination of published and novel PCR primers, and we 
attempted to identify the phylotypes of cryptic taxa using reference 
data in GenBank (Appendix S1; Tables S2 and S3). We constructed 
a phylogeny using concatenated data from both markers and evalu-
ated support with 1,000 bootstraps (Appendix S1). We further used 
publicly available data from TimeTree (Kumar et al., 2017) to cor-
roborate the overall tree topology and to scale all branch lengths 
based on genus- level node ages for taxa in the tree (Appendix S1). 
The resulting community phylogeny comprised 14 small- mammal 
taxa, including Steatomys parvus, two hare phylotypes (provisionally 
Lepus spp. A and B; see also Kartzinel et al., 2019) and three mouse 
phylotypes (provisionally Mus spp. A– C). We treat these phylotypes 
as equivalent to species in our analysis, pending further taxonomic 
investigation (Appendix S1; Figure 1, Figure S2– S4). The overall tree 
topology matched the accepted clade structure (e.g., families, sub-
families, tribes) and bootstrap support for the branching pattern was 
particularly high near the tips (Figure 1). Comparison of our phylog-
eny to the genus- level topology of TimeTree revealed ambiguity in-
volving only the short branches of genera within the Arvicanthini 
tribe, further highlighting the opportunities for taxonomic investiga-
tion of small mammals from East Africa (Figure 1).

2.4  |  Microbiome analysis

Our strategy to generate data on the relative abundance of bacte-
rial taxa included bioinformatic processing and taxonomic assign-
ments of amplicon sequence variants (ASVs). Briefly, we produced 
18,968,931 Illumina sequence reads (median = 145,750 per sam-
ple) across all 128 samples and the mock community (Table S1). We 
removed primer sequences and cut reads to 213 bp using DADA2 
(Callahan et al., 2016) in R (R Core Development Team, 2020). We 
ran the DADA2 sequence- variant algorithm (dadaFs/Rs) on derep-
licated sequences with their assigned error rates before merging 
forward and reverse sequence reads into ASVs and removing chi-
meras. We assigned taxonomy to all remaining ASVs by compar-
ing them with the SILVA database version 132 (Quast et al., 2013) 
using the naive Bayesian assignment algorithm in QIIME2 (Bokulich 
et al., 2018; Thompson et al., 2017). We screened potential con-
taminants by comparing ASVs from the mock community with 
reference sequences for the mock community and identified nine 
ASVs (Table S4) that did not match the mock community for removal 
from all samples as putative contaminants. These ASVs represented 
three nontarget fungal taxa, five bacterial taxa and one unknown se-
quence; only one of these nine ASVs was also present and excluded 
from analysis as a result (an uncultured Bacteroidetes present in 19 
samples; 0%– 2% RRA per sample; Table S4). We then removed all 
putative bacterial sequences not identified to the phylum level as 
well as nonbacterial ASVs from Eukarya, Archaea, chloroplast, and 
mitochondria (Table S1 reports read counts at each stage of the 

pipeline). Before proceeding, we dropped two samples that yielded 
<5,000 sequences: one from the elephant shrew Elephantulus ru-
fuscens and one from the pouched mouse Saccostomus mearnsi. To 
facilitate comparisons of microbiome diversity and composition, we 
rarefied data representing 7,720,016 sequences across the remain-
ing 126 samples to the lowest read depth (N = 7,017 reads per sam-
ple). This final data set contained 9,887 ASVs, including singletons 
that were retained after rarefying.

To summarize the data for further analysis, we characterized 
bacterial variation within and between samples. To quantify varia-
tion within samples, we used Hill numbers (Hill, 1973) to compare 
bacterial richness (0D) and diversity (1D) in the hilldiv package in R 
(Alberdi & Gilbert, 2019). We found bacterial richness and diver-
sity to be correlated and thus focus on analyses of diversity. We 
measured variation bacterial community composition between 
samples using Bray– Curtis dissimilarity as well as weighted and un-
weighted UniFrac metrics. UniFrac is a distance metric that includes 
information on the phylogenetic relatedness of ASVs (Lozupone & 
Knight, 2005). Unweighted UniFrac gives unique bacterial lineages 
that contain rare and common ASVs equal weight, whereas weighted 
UniFrac emphasizes differences in relatively abundant bacterial lin-
eages. To calculate UniFrac, we aligned ASVs in the program MAFFT 
(Katoh, 2002) and constructed a bacterial phylogeny with FastTree 
(Price et al., 2009) in QIIME2.

Finally, to characterize functional differences between gut mi-
crobiomes of host species, we used Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States (PICRUSt2; 
Douglas et al., 2019). We aligned the ASVs from our rarefied data 
set to a reference tree consisting of marker genes from known bac-
terial genomes that consisted of 20,000 16S rRNA gene clusters. 
Based on the relative abundance of each ASV in each sample, the 
gene family copy numbers were calculated and mapped to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and KEGG Orthology 
(KO) databases. Using predicted functional KO pathways, we added 
the corresponding metabolic pathways using the MetaCyc database 
(Caspi et al., 2018; Karp & Caspi, 2011). We identified 400 predicted 
metabolic pathways across 51 MetaCyc categories. Because each 
ASV can be mapped to one or more pathways and thus generate 
unequal pathway abundances across samples, we rarefied pathway 
abundances to the lowest number per sample and the final functional 
data set comprised 399 predicted pathways across 51 MegaCyc cat-
egories (N = 53,512 predicted pathway abundances per sample).

2.5  |  Hypothesis testing

We tested our first hypothesis, that species differ significantly 
in microbiome composition, using both univariate and multivari-
ate measures. To test for statistically significant differences in the 
diversity of bacterial ASVs within samples from each species, we 
used Kruskal- Wallis tests. To test for significant differences in mi-
crobiome composition among host species, we compared the Bray– 
Curtis dissimilarity and weighted and unweighted UniFrac metrics 
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    |  2325BROWN et al.

using permutational multivariate analysis of variance (perMANOVA) 
with 999 permutations in vegan (Anderson & Walsh, 2013; Oksanen 
et al., 2016). Subsequently, we tested for significant pairwise dif-
ferences in microbiome composition using pairwise perMANOVA 
followed by Benjamini- Hochberg corrections for multiple compari-
sons (Martinez Arbizu, 2017). We performed analysis of multivari-
ate homogeneity in group dispersions to characterize the extent of 
interindividual variation within host species using ANOVA followed 
by Tukey's HSD test in vegan. We visualized the microbiome differ-
ences among all samples using nonmetric multidimensional scaling 
(NMDS).

To test our second hypothesis, that differences in microbi-
ome composition increased with phylogenetic distances among 
species (i.e., phylosymbiosis), we quantified phylogenetic signal 

in mean microbiome diversity using Pagel's λ based on the geiger 
(Harmon et al., 2008) and phylosig functions in the phytools package 
(Revell, 2012). When λ = 1, the pattern of microbiome diversity is 
consistent with a Brownian- motion model of evolution and thus the 
microbiome diversity of closely related species tends to be similar; 
when λ = 0, variation in microbiome diversity reflects phylogenetic 
independence (Freckleton et al., 2002). To test for significant cor-
relations between the pairwise phylogenetic divergence of hosts 
and their mean pairwise Bray– Curtis dissimilarity and UniFrac dis-
tances, we used two approaches that emphasize different character-
istics of the data: Robinson- Foulds and Mantel tests. We first used 
topology- based normalized Robinson- Foulds (nRF) tests in phangorn 
(Schliep, 2011) to evaluate correspondence between the branch-
ing patterns of the host phylogeny and of a UPGMA dendrogram 

F I G U R E  1  Small mammal community phylogeny and gut microbiome compositions. (a) The phylogeny of 14 species includes three 
taxonomic orders: Rodentia (rodents; subfamily names in grey), Lagomorpha (hares), and Macroscelidea (elephant shrew). The numbers 
at the nodes represent bootstrap support values, with elephant shrew as the appropriate outgroup. Grey text at the nodes represents 
relevant family- , subfamily- , and tribe- level clades within the rodents and indicate that the phylogeny represents our best current knowledge 
of evolutionary relationships within and among these taxa. To visualize body size distributions across the phylogeny, we used maximum 
likelihood ancestral state reconstruction method implemented by the contMap function in phytools in R. Microbiome sample sizes are 
shown at the tips in parentheses. (b) Microbiome diversity is shown as the mean number of ASVs per sample ± standard deviation. (c) Stacked 
bar charts show the relative read abundance (RRA) of six bacterial phyla representing >5% RRA across all samples; the RRA of 19 “other” 
phyla representing <5% RRA are shown in grey. [Colour figure can be viewed at wileyonlinelibrary.com]
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representing the pairwise Bray– Curtis dissimilarity and UniFrac 
distances; we visualized topological congruence between the host- 
phylogeny and microbiome dendrograms using tanglegrams in the 
dendextend package (Galili, 2015). A nRF score of 0 represents com-
plete congruence while 1 represents complete incongruence. To 
complement this topology- based approach, we used distance- based 
Mantel tests to evaluate correlations between the phylogenetic dis-
tance separating host species (square- root transformed) and their 
corresponding microbiome differences, with 999 permutations in 
vegan. These two tests provide complementary information be-
cause Mantel tests measure host evolutionary distances quantita-
tively whereas Robinson- Foulds tests emphasize the hierarchical 
clustering of host lineages (Lim & Bordenstein, 2020).

To account for spatiotemporal heterogeneity of sampling and 
the number of samples used to represent the microbiomes of each 
host species when testing for phylosymbiosis, we selected represen-
tative subsamples of each species in a bootstrapping procedure. In 
this procedure we randomly selected one representative sample per 
species, calculated the pairwise differences, and repeated this pro-
cedure 999 times. For each of these matrices, we calculated Mantel's 
r and the nRF score. This allowed us to evaluate the distribution of 
Mantel and Robinson- Foulds test values that would be obtained 
based on these subsampled data sets, and whether the values based 
on our full data set differed significantly from this distribution.

To test our third hypothesis, we compared microbiome differ-
ences based on host functional traits after accounting for phyloge-
netic relatedness. We quantified phylogenetic signal in mean body 
size using Pagel's λ based on mean body size data (log- transformed g) 
for all species. We tested whether mean body size and the three diet 
variables (mean δ13C, δ15N, and SEA size (variation within species)) 
were correlated with mean bacterial diversity using phylogenetic 
generalized least squares (PGLS) in caper (Orme et al., 2018). We 
performed PGLS assuming a model of Brownian motion (λ = 1) and 
compared results to an ordinary least squares regression (λ = 0) to 
avoid errors estimating λ using a relatively small phylogeny. Finally, 
we used partial Mantel tests to evaluate correlations between mean 
microbiome dissimilarity based on both Bray- Curtis and UniFrac ma-
trices with (i) mean body size difference (log- transformed) and (ii) 
isotopic niche separation (1 –  proportional SEA), while accounting 
for phylogenetic relatedness (square- root transformed). We tested 
for significance using 999 permutations for body size, and 99 per-
mutations for dietary separation due to the smaller number of pair-
wise comparisons possible. To evaluate the extent to which patterns 
are consistent across phylogenetic scales, we repeated all statisti-
cal tests for a phylogenetically clustered subset of rodent species 
(N = 11) versus the more phylogenetically dispersed suite of 14 host 
species.

We used information about the functional potential of micro-
biomes to investigate variation that could be indicative of host di-
etary differences. As we did for the comparisons of microbiome 
taxonomy, we calculated Bray– Curtis dissimilarity in the predicted 
metabolic pathways from the rarified PICRUSt2 analysis to: (i) plot 
NMDS ordinations, (ii) test for significant differences between host 

species using perMANOVA, and (iii) perform dispersion analyses. To 
compare these microbiome- based inferences of diet with isotope- 
based inferences of diet from the subset of seven species sampled 
over an earlier time period (2009– 2013), we performed a Mantel 
test for correlation between Bray– Curtis dissimilarity of predicted 
functional pathways and dietary niche separation (1 –  proportional 
SEA) based on 99 permutations. Finally, we calculated the mean rel-
ative abundance of predicted functions pertaining to carbohydrate 
degradation (CD) and amino acid degradation (AAD). The CD and 
AAD pathways can be sensitive to the lignocellulosic and protein 
content of herbivore diets, respectively (Baniel et al., 2021; Gong 
et al., 2020; Hicks et al., 2018). Thus, we created a ratio of these two 
values (CD/AAD) such that a high CD/AAD ratio can be interpreted 
to indicate functional characteristics in a gut microbial community 
that may be consistent with diets that contain a higher ratio of cellu-
lose and other carbohydrates to protein, and vice versa.

3  |  RESULTS

We obtained microbiome data from 126 samples (out of 128) and 
constructed a robust community phylogeny to test our hypoth-
eses (Table 1; Figure 1). Six of these species were identified with 
the aid of fecal DNA barcodes, including Steatomys parvus, a phy-
lotype matching Mus minutoides (Mus sp. A), a phylotype matching 
Mus cf. gerbillus (Mus sp. B), a novel Mus phylotype (Mus sp. C), and 
the two unidentified Lepus phylotypes (Lepus spp. A and B). Of the 
seven species for which we obtained isotopic data, some exhibited 
relatively narrow isotopic niches. For example, Saccostomus mearnsi 
and Aethomys hindei had low and invariant δ13C and δ15N values 
that were both indicative of primary consumers specializing on C3 
plants, whereas Gerbilliscus robustus had a much larger isotopic niche 
centered around intermediate δ13C and δ15N values that reflect a 
foraging strategy of a generalized omnivore (Figure S5). The strictly 
insectivorous elephant shrew Elephantulus rufescens exhibited a rela-
tively high trophic position, with a similar mean δ15N value to the 
rodents Taterillus harringtoni and Grammomys dolichurus, and with an 
isotopic niche that was nested entirely within that of Gerbilliscus ro-
bustus (Figure S5; Table 1). For both δ13C and δ15N, there were strong 
and significant differences between host species but little variation 
through time or space (we found only weak, albeit statistically sig-
nificant, differences in average δ15N across sites; Figure S5).

The 9,887 microbial ASVs represented 25 bacterial phyla and 
included at least 45 classes (2% unclassified), 91 orders (3% unclas-
sified), 177 families (3% unclassified), 385 genera (25% unclassified), 
and 219 species (58% unclassified). The phyla with the great-
est mean RRA across all samples were Firmicutes (63% RRA) and 
Bacteroides (25%), which accounted for the vast majority of bacteria 
from all hosts (Figure 1). Firmicutes accounted for ≥56% RRA in all 
host species except elephant shrew (40%). Bacteroides was the most 
abundant phylum in elephant shrew (45% RRA) and the second- most 
abundant phylum in all other species (17% to 36%). Other phyla 
prominent in at least one host species included Cyanobacteria (mean 
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    |  2327BROWN et al.

3% across species, 7% in Aethomys hindei), Proteobacteria (mean 3%, 
8% in Elephantulus rufescens), and Epsilonbacteraeota (mean 2%, 8% 
in Acomys kempi).

3.1  |  Interspecific differences in gut microbiomes

Consistent with our first hypothesis, gut microbiome diversity 
composition differed significantly among host species. Mean mi-
crobiome diversity was greatest for the elephant shrew E. rufes-
cens, while rodent microbiomes spanned a broad and intermediate 
range of diversities with hare microbiomes having comparably low 
diversity (χ2 = 59.4, df = 13, P < .001; Table 1). Host identity ac-
counted for 35% of variation in Bray– Curtis dissimilarity, 34% of 
unweighted UniFrac distances, and 38% weighted UniFrac distances 
among species based on perMANOVAs; similar results were ob-
tained when we limited the analysis to just the 11 rodent species 
(Figure 2, Figures S7, S8). Mean pairwise intraspecific unweighted 

UniFrac distances were lower than pairwise interspecific distances 
for all comparisons except among Mus species, while mean pair-
wise intraspecific weighted UniFrac were the same or lower than 
pairwise interspecific distances in all cases (Table S5). Microbiomes 
were far more similar between species of the same order compared 
to species of different orders, with the greatest degree of overlap 
between the two hare species (Tables S5 and S6). Of the 91 pos-
sible interspecific comparisons of microbiome composition, most 
differed significantly in all metrics after correcting for multiple com-
parisons; only eight Bray- Curtis, eight unweighted UniFrac, and 14 
weighted UniFrac comparisons did not differ significantly, most of 
which involved closely related species (including all contrasts be-
tween congeneric pairs of Lepus spp. and Mus spp.) and similar sized 
species (including Mus spp., Steatomys parvus, and Acomys kempi; 
Tables S5 and S6). Unexpectedly, one or all microbiome community 
metrics did not differ significantly between Arvicanthis niloticus and 
Mus spp. (same family) and Aethomys hindei and Gerbilliscus robustus 
(similar size). Dispersion analyses revealed significant differences 

F I G U R E  2  Variation in microbiome 
composition within and among species. 
(a) We ordinated pairwise unweighted 
UniFrac distances between 126 samples 
using NMDS (stress = 0.20). The + 
marks correspond to each sample and 
the large shapes indicate the centroids 
of each species. Species differed 
significantly in microbiome composition 
overall (pseudo- F13,112 = 4.5, R2 = .34, 
P ≤ .001) and in comparisons involving 
rodents only (pseudo- F10,92 = 3.7, 
R2 = .29, P ≤ .001). Dashed lines represent 
95% confidence ellipses around 
samples from each of the three orders 
(black = Rodentia; red = Lagomorpha; 
green = Macroscelidea). (b) A tanglegram 
connects tips of the small mammal 
phylogeny (left) to a UPGMA dendrogram 
representing mean pairwise unweighted 
UniFrac distances (right). We rotated 
the trees to minimize crossing of lines. 
Analogous plots are provided for Bray– 
Curtis dissimilarity (Figure S6) and 
weighted UniFrac (Figure S7). Variation 
in levels of intraspecific microbiome 
dispersion are reported in Figure S10. 
[Colour figure can be viewed at 
wileyonlinelibrary.com]
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2328  |    BROWN et al.

among species in the degree of intraspecific microbiome variation 
across metrics (Bray- Curtis: P < .001; unweighted UniFrac: P < .001; 
weighted UniFrac: P = .025; Figure S9). These overall differences 
were driven by the subset of species with the highest mean disper-
sion levels (e.g., Aethomys hindei and Saccostomus mearnsi for the un-
weighted UniFrac metric; Figure 2, Figure S9), whereas most Tukey's 
HSD comparisons were not significant in other dispersion metrics 
(Table S7).

3.2  |  Phylosymbiosis in gut microbiomes

We found mixed support for our second hypothesis that microbiome 
composition would differ significantly between species in a pattern 
consistent with phylosymbiosis. On the one hand, the host phylog-
eny and microbiome dendrogram were topologically congruent and 
we found significant positive correlations between the phylogenetic 
distance and microbiome dissimilarity of host species, consistent 
with expectations under phylosymbiosis. On the other hand, the 
strength (and significance) of these phylogenetic associations with 
microbiome composition depended on the metric used to charac-
terize the microbiome (e.g., weighted vs. unweighted UniFrac) and 
mean microbiome diversity did not exhibit phylogenetic signal for 
the full community (diversity: λ = 0, P = 1) or for rodents alone (λ = 0, 
P = 1). The host phylogeny and microbiome dendrogram topologies 
were most congruent for Bray- Curtis (nRF = 0.58) and unweighted 
UniFrac (nRF = 0.58), followed by weighted UniFrac (nRF = 0.91). 
Similarly, phylogenetic distance among host species was significantly 
correlated with differences in microbiome composition based on 
Bray- Curtis and unweighted (but not weighted) UniFrac, most strik-
ingly across all species but also within rodents (Figure 3, Figure S10). 
Hosts from different orders thus contributed most strongly to the 
phylosymbiotic pattern, which was weaker among closely related 
rodents (Figure 2, 3, Figures S7, S8, S10).

Our sensitivity analysis showed that (i) differences in microbiome 
composition inferred from the full data set did not produce Mantel or 
Robinson- Foulds values that differed significantly from those based 
on representative subsamples from each host species and (ii) that 
performing these tests on a subsample from each host species can 
produce a wide range of results. Results obtained from the full data 
set fell within the broad ranges of values obtained when selecting a 
single representative sample per species for both Robinson- Foulds 
(Bray- Curtis: median nRF value = 0.67, interquartile range = 0.58– 
0.75, P = .930; unweighted UniFrac: median nRF = 0.67, IQR = 0.58– 
0.75, P = .860; weighted UniFrac: nRF = 0.92, IQR = 0.83– 0.92, 
P = .635) and Mantel tests (Bray- Curtis: median r statistic = .50, 
interquartile range = 0.45– 0.53, P = .128; unweighted UniFrac: me-
dian r = 0.50, IQR = 0.45– 0.54, P = .161; weighted UniFrac: me-
dian r = 0.22, IQR = 0.11– 36, P = .264). Differences in the degree 
of microbiome overlap between the pairs of samples used to repre-
sent closely related hosts thus produce some imprecision in these 
parameter estimates, but overall inferences about the presence 
of patterns that are consistent with phylosymbiosis are robust to 

this uncertainty in part because hosts from different orders have 
strongly differentiated gut microbiomes.

3.3  |  Functional trait associations with gut 
microbiomes

Our third hypothesis, that microbiome composition is associated 
with host functional traits, was largely supported for body size but 
more moderately supported for diet differentiation. Body size had 
strong and significant phylogenetic signal among all species in the 
community, but this signal was diminished when comparisons were 
limited to the 11 rodent species (all: λ = 1, P < .001; rodents: λ = 1, 
P = .087; Figure 1). There was a significant positive correlation be-
tween body size and mean microbiome diversity among rodents 
using both OLS and PGLS models (Figure 4); however, when includ-
ing elephant shrew and hares (the largest species), there was no 
significant relationship between body size and diversity (Figure 4). 
Within rodents, body- size differences were correlated significantly 
with microbiome compositional dissimilarity based on Bray- Curtis 
and both UniFrac metrics (Figure 3, Figure S10). This correlation 
remained significant when including elephant shrew and hares for 
Bray- Curtis and unweighted UniFrac analysis, but not weighted 
UniFrac (Figure 3, Figure S10).

Isotopic differences were positively and significantly correlated 
with Bray– Curtis dissimilarity and unweighted UniFrac across all 
host species and the subset of rodents alike, but dietary differences 
were not significantly correlated with weighted UniFrac for either 
set of host species (Figure 3, Figure S10). We also found no signif-
icant correlations between microbiome diversity and any of the 
isotopic dietary metrics (δ13C, δ15N, and SEA; Figure S13), although 
these analyses had low statistical power because we only had data 
for a subset of 7 host species.

There were strong and significant differences in the functional 
composition of microbiomes across all 14 host species as inferred 
using PICRUSt2 (Figures S11 and S12). Notably, there was a weakly 
positive and significant correlation between differences in the 
trophic position of 7 host species inferred using isotopes (1 –  pro-
portional SEA overlap) and the functional differences among mi-
crobiomes inferred using PICRUSt2 (all: Mantel r = 0.30, P = .05; 
rodents only: r = 0.51, P = .03; Figure S11; Tables S8– S10). As ex-
pected, the microbiome with the lowest CD/AAD ratio (functionally 
indicative of more animal- based diets) was observed in the insec-
tivorous elephant shrew Elephantulus rufescens (which had a rela-
tively high trophic position), whereas herbivorous rodents such as 
Saccostomus mearnsi and Aethomys hindei had higher CD/AAD ratios 
indicative of more plant- based diets (Tables S11, S12; Figure S12). 
Unexpectedly, however, the rodent Grammomys dolichurus had the 
highest CD/AAD ratio despite having a relatively high mean δ15N 
and the strictly herbivorous hares had intermediate CD/AAD ratios 
(Tables S11, S12; Figure S12). The functional composition of micro-
biomes thus differed significantly between host species in ways that 
generally corresponded to trophic differences known from isotopic 
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data collected from these same populations during an earlier study 
period, although interpreting any predicted functional differences 
or constituent pathways as indicators of different diet types remains 
a challenge.

4  |  DISCUSSION

Our data show that the strongest phylosymbiotic signal is associ-
ated with high- level taxonomic groupings (order), consistent with 

our hypothesis that microbiome differentiation increases with host 
phylogenetic distance. At lower taxonomic levels (within rodents), 
the phylosymbiotic signal is reduced and microbiome differentiation 
is more clearly associated with differences in body size, which did 
not in turn exhibit significant phylogenetic signal for the subset of 
rodents present in this community. The association between micro-
biome and body size might reflect ecological processes operating in 
size- structured host communities, including the tendency for larger 
hosts to contain more diverse and compositionally distinct micro-
biomes compared to smaller ones (Godon et al., 2016; Sherrill- Mix 

F I G U R E  3  Correlations of microbiome unweighted UniFrac distance with phylogeny and functional traits. Predictor variables include (a) 
host phylogenetic distance (square- root transformed), (b) mean body- size difference, and (c) isotope- based proportional nonoverlap metric 
as a proxy for dietary differences between pairs of species. Circles represent within- order comparisons and + represent between- order 
comparisons. Shorter solid trend lines show correlations based on the subset of rodents and longer dashed lines represent comparisons of 
all species. Correlations involving phylogenetic distance were based on Mantel tests whereas all other correlations were based on partial 
Mantel tests to account for the phylogenetic relatedness of hosts. Correlations involving phylogeny and body size were evaluated using 999 
permutations, but correlations involving diet were limited to 99 permutations due to the relatively small subset of species available for this 
analysis.

(a) (b) (c)

F I G U R E  4  Correlations between mean body size and mean microbiome diversity. We compared models based on PGLS (black lines) and 
OLS (grey lines) for the entire community (longer dashed lines) and the subset of rodents (shorter solid lines).
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et al., 2018). Dietary variation also exerts influence on microbiome 
composition in ways that may reinforce the phylogenetic separation 
of disparate herbivorous, omnivorous, and insectivorous lineages 
or that may conversely reflect the use of similar dietary niches as 
in the case of some phylogenetically divergent rodent species from 
this community. The roots of phylosymbiosis are located deep in 
the phylogeny, but the ecology of local communities may counter or 
even disrupt this overarching phylosymbiotic signal near the tips of 
the phylogeny. Our results highlight the importance of scale in the 
interpretation of phylosymbiotic patterns.

Microbiome differentiation increased with phylogenetic diver-
gence among hosts, consistent with phylosymbiosis, and was most 
striking among hosts from different orders. For example, the two 
hares and the elephant shrew shared only 1%– 2% of bacterial ASVs 
with any of the 11 rodent species. Place- based studies that com-
pare microbiome composition across deeply divergent mammalian 
lineages often report similar results, including comparisons of three 
orders in Madagascar (Perofsky et al., 2019) and seven orders in 
Kenya (Kartzinel et al., 2019). The pairs of hosts in our analysis that 
did not differ significantly in microbiome composition diverged more 
recently on average (7– 33 Ma; median 29 Ma) than pairs that did (11– 
105 Ma; median 33; Figures 1 and 2; Tables S5, S6). The most closely 
related host species in our study exhibited a relatively high degree 
of microbiome overlap and no significant difference in composition 
(80%– 86% shared ASVs by 3 Mus spp.; 75% shared by 2 Lepus spp.). 
These two sets of congeners have only subtle morphological differ-
ences, and we might have failed to observe this pattern if we had 
relied solely on field identifications without the aid of host DNA 
barcoding for identification (Pringle & Hutchinson, 2020). Our re-
sults are thus consistent with prior reports that phylosymbiotic pat-
terns are weak or absent among rodents (Grond et al., 2020; Song 
et al., 2020). Importantly, whereas the presence of some closely re-
lated host taxa with undifferentiated microbiomes contributed to a 
dampening of the phylosymbiotic pattern, the pattern was evident 
because the phylogenetic scale of host species in this community 
included taxa with strongly differentiated microbiomes.

The phylogenetic scales at which associations between microbi-
omes and host lineages become prominent may differ depending on 
the lineages under consideration, their behaviovrs, and their func-
tional traits. Elucidating mechanisms that contribute to phylosymbi-
otic patterns at different phylogenetic scales is an emerging priority 
(Mazel et al., 2018; Moran et al., 2019). Characteristics of mammals 
that include live birth and parental care can facilitate the vertical 
transmission of gut bacteria among rodents in the laboratory, and 
this commonality could be one mechanism behind the emergence 
and reinforcement of phylosymbiotic patterns (Moeller et al., 2018). 
The next critical step toward understanding why the strength of phy-
losymbiotic patterns can vary across mammalian lineages and phy-
logenetic scales is to consider how divergent characteristics could 
modify this underlying pattern (Mazel et al., 2018). For example, we 
observed a strong association between microbiome and body size 
among rodents, which share a relatively shallow phylogenetic his-
tory (Figures 3 and 4). In contrast, associations between microbiome 

and diet were similar both within the rodent lineage and beyond 
(Figure 3). Diet as a determinant of microbiome composition was 
especially clear in comparisons of the rodents Saccostomus mearnsi 
and Aethomys hindei, which had broad dietary overlap (Figure S5) 
and notably similar microbiome compositions given their relatively 
large phylogenetic distance (Figures 2 and 3). Together, these re-
sults reinforce the influence of phylogenetic scale on patterns in-
volving host- microbiome interactions and highlight the challenges 
associated with generalizing from studies that sample mammalian 
lineages at broad phylogenetic scales (Godon et al., 2016; Nishida & 
Ochman, 2018; Reese & Dunn, 2018; Sherrill- Mix et al., 2018).

At the largest phylogenetic scales, gross anatomical differences 
between host lineages may ensure the differentiation of both diet 
and microbiome, making it difficult to disentangle the influence of 
phylogeny and functional traits. For example, whereas previous 
studies have reported that herbivores generally have greater mi-
crobiome diversity than omnivores or carnivores, closer inspections 
have revealed the dietary effect dissipates when controlling for dif-
ferences in digestive morphophysiology (e.g., foregut or hindgut fer-
menters vs. those with simple guts; Nishida & Ochman, 2018; Reese 
& Dunn, 2018). There is considerable trophic omnivory among ro-
dents in the community that we studied (Bergstrom, 2013), and we 
found that microbiome diversity in omnivorous rodents tended to 
be lower than in strictly insectivorous elephant shrews and higher 
than in strictly herbivorous hares (Figures S5 and S6), suggesting 
that microbiome diversity may at least sometimes increase with tro-
phic position when controlling for both anatomy (simple guts) and 
geography. Our comparison of rodents and hares matches the re-
sults of another community- level study that found higher microbi-
ome diversity in rodent species compared to a hare species, perhaps 
reflecting a general pattern whereby rodents with more omnivorous 
diets and/or higher mass- specific metabolic rates can foster more 
diverse microbiomes despite having lower average gut sizes than 
hares (Li et al., 2017). Comparisons of microbiome composition thus 
depend on both the phylogenetic scale and functional diversity of 
hosts involved.

The difficulty of sampling all host species from each of our 
trapping grids prevented spatiotemporal replication of our phy-
logenetic analyses, but cross- site comparisons of localized phylo-
symbiotic patterns would be instructive in light of prior work that 
has shown diets and microbiomes differ among populations (Amato 
et al., 2013, 2020). Both within and among small- mammal popula-
tions, individual- level variation in body size and body condition can 
occur through time as resource availability, diet quality, and popu-
lation density vary (Farías et al., 2021; Long et al., 2017). Similarly, 
microbial communities comprise considerable genetic variation 
both within and among bacterial taxa that cannot be resolved using 
16S rRNA sequencing but that may be resolved by promising new 
sequencing approaches (e.g., metagenome- assembled genomes, 
or “MAGs” [Bowers et al., 2018]). Accounting for these sources 
of variation could reveal patterns in host- microbiome associations 
beyond what was evident in our study. Prior work has shown that 
gut microbiome compositions respond to changes in diet on daily 
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timescales (David et al., 2014), and work to elucidate fine- scale 
spatiotemporal variation in diet- microbiome linkages could clarify 
how differences in diet composition might “scale up” to influence 
phylogenetic patterns (Kartzinel et al., 2019). Notwithstanding 
these limitations, this small mammal community exhibited suffi-
cient consistency in species- level isotopic niches and microbiome 
compositions to support this comparative investigation of phylo-
symbiotic patterns.

Prior studies of phylosymbiosis have emphasized cross- taxon 
comparisons and many reported relatively low levels of intraspe-
cific replication (e.g., Amato et al., 2019; Grond et al., 2020; Song 
et al., 2020; Youngblut et al., 2019). By focusing on 14 locally cooc-
curring small mammal species, we were able to achieve relatively 
high levels of within- species replication and evaluate the sensitivity 
of our results to spatiotemporal variation in the samples selected 
to represent host species. This sensitivity analysis supported our 
overarching conclusions and highlighted benefits of quantifying in-
traspecific variation in phylosymbiosis studies. When subsampling 
microbiome replicates, we obtained Mantel r and Robinson- Foulds 
values that varied widely. Some iterations revealed much larger or 
smaller values than our complete data set, reinforcing the benefit 
of accounting for intraspecific variation in comparative phylogenetic 
studies (Garamszegi & Møller, 2010). Emphasis on sampling phylo-
genetically distant taxa at the expense of within- species replication 
could thus complicate efforts to reconcile divergent results in the 
phylosymbiosis literature (Mallott & Amato, 2021).

The disparate geographic and phylogenetic scales of prior phy-
losymbiosis investigations have made it hard to generalize. To begin 
overcoming this challenge, we identified three widely recognized de-
terminants of host- microbiome associations: (i) genetic divergence 
between host species, (ii) dietary niches of host species, and (iii) 
functional similarity of host traits. Our initial expectation was that 
greater divergence in any of these variables would translate into 
greater microbiome differentiation. Yet, because these variables do 
not diverge at the same rate, the relative importance of each variable 
is liable to vary with both the geographic and phylogenetic scales of 
investigation. Reports of strong phylosymbiotic patterns over broad 
geographic extents and deep phylogenetic scales may predominate 
because hosts inevitably differ along multiple functional axes in these 
comparisons (Ley et al., 2008; Muegge et al., 2011; Song et al., 2020; 
Youngblut et al., 2019). At intermediate geographic extents and phy-
logenetic scales, however, studies of closely related hosts may be less 
likely to identify phylosymbiosis because closely related species can 
persist in different communities without an ecological requirement 
to differ in morphology, diet, or other functional axes that shape their 
microbiome (Grond et al., 2020; Lutz et al., 2019). By focusing within 
communities, researchers may be better equipped to tease apart the 
interplay of variables that shape the microbiomes of wild animals 
(Kartzinel et al., 2019; Knowles et al., 2019; Moeller et al., 2013). At 
this scale, there are theoretical limits on the cooccurrence of spe-
cies with similar characteristics (Chesson, 2000), and these limits are 
borne out in the sized- structured rodent communities of arid ecosys-
tems worldwide (Bowers & Brown, 1982; Kelt et al., 1996). The extent 

of phylosymbiosis in ecological communities could thus be mediated 
by a balance between the divergent natural histories of closely re-
lated species and the convergent functional characteristics that en-
able more distant lineages to occupy a similar niche.

Our results show that deep evolutionary splits between mam-
malian lineages established phylosymbiotic patterns in gut micro-
biomes and that the strength of these patterns depends on the 
phylogenetic scales of hosts under investigation. This may be why 
phylosymbiosis is often absent in investigations of species groups 
that occur close to the tips (Amato et al., 2019; Kartzinel et al., 2019; 
Ley et al., 2008; Muegge et al., 2011; Song et al., 2020). Do distantly 
related hosts share bacterial taxa that enable their convergent use 
of shared dietary resources? Do diet- microbiome linkages differen-
tially influence host sensitivity to local environmental changes? Do 
metagenomes facilitate hosts' use of different limiting resources in 
ways that stabilize coexistence? Whereas prior studies have em-
ployed the tools of community ecology to characterize bacterial as-
semblages, there may be new opportunities to leverage knowledge 
of microbiomes to study the assembly of functionally diverse host 
communities in return.
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